Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca²+- and K+-permeable conductance in root cells.
نویسندگان
چکیده
Plant cell growth and stress signaling require Ca²⁺ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH•. In root cells, extracellular OH• activates a plasma membrane Ca²⁺-permeable conductance that permits Ca²⁺ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca²⁺-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH•-activated Ca²⁺- and K⁺-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca²⁺ in response to OH•. An OH•-activated Ca²⁺ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca²⁺-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca²⁺ in plants.
منابع مشابه
Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+ - and K+ -permeable conductance in root cells
Laohavisit, A., Shang, Z., Rubio, L., Cuin, T. A., Very, A.-A., Wang, A., Mortimer, J. C., Macpherson, N., Coxon, K. M., Battey, N. H., Brownlee, C., Park, O. K., Sentenac, H., Shabala, S., Webb, A. A. R. and Davies, J. M. (2012) Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+ and K+ -permeable conductance in root cells. The Plant Cell, 24 (4). pp. 1522-1533. ISSN 1040-...
متن کاملFree oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells.
Free oxygen radicals are an irrefutable component of life, underlying important biochemical and physiological phenomena in animals. Here it is shown that free oxygen radicals activate plasma membrane Ca(2+)- and K(+)-permeable conductances in Arabidopsis root cell protoplasts, mediating Ca(2+) influx and K(+) efflux, respectively. Free oxygen radicals generate increases in cytosolic Ca(2+) medi...
متن کاملArabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death.
Reactive oxygen species (ROS) are central to plant stress response, signalling, development and a multitude of other processes. In this study, the plasma-membrane hydroxyl radical (HR)-activated K(+) channel responsible for K(+) efflux from root cells during stress accompanied by ROS generation is characterised. The channel showed 16-pS unitary conductance and was sensitive to Ca(2+), tetraethy...
متن کاملIdentification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells.
Cytosolic Ca(2+) in guard cells plays an important role in stomatal movement responses to environmental stimuli. These cytosolic Ca(2+) increases result from Ca(2+) influx through Ca(2+)-permeable channels in the plasma membrane and Ca(2+) release from intracellular organelles in guard cells. However, the genes encoding defined plasma membrane Ca(2+)-permeable channel activity remain unknown in...
متن کاملEngineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants.
Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2012